Energies (Oct 2022)

Single-Stage Isolated and Bidirectional Three-Phase Series-Resonant AC–DC Converter: Modulation for Active and Reactive Power Control

  • Damian Sal y Rosas,
  • Daniel Chavez,
  • David Frey,
  • Jean-Paul Ferrieux

DOI
https://doi.org/10.3390/en15218070
Journal volume & issue
Vol. 15, no. 21
p. 8070

Abstract

Read online

Single-stage isolated and bidirectional (SSIB) AC–DC converters have a high potential for future solid-state transformers and smart battery chargers due to their reduced volume and high efficiency. However, there is a research gap for SSIB reactive power injection. This article introduces an SSIB three-phase AC–DC converter composed of three low frequency rectifiers linked by tiny film capacitors with a quad-active-bridge series-resonant (QABSR) DC–DC. A novel QAB modulation is proposed to solve three issues: (1) Three DC inputs with high ripple compensation, (2) active–reactive power injection, and (3) minimization of high-frequency (HF) transformers currents. The rectified grid voltages were modulated by time-variant duty ratio (DR) angles. In contrast, the DC source was modulated by a fixed DR (FDR) angle along with a phase-shift angle which changes according to the grid current amplitude. A constant HF current amplitude with minimum value was obtained. It is shown that the HF current amplitude is increased for reactive power injection. Hence, the FDR angle was used to compensate for this increase. Active and reactive power control were validated in a 2 kW prototype. Compared with other structures, tiny DC-link capacitors and smaller L filters were used. Moreover, higher efficiency (96%) and smaller grid currents THDi (3%) were obtained.

Keywords