Analysis and Geometry in Metric Spaces (Sep 2024)

Schauder estimates on bounded domains for KFP operators with coefficients measurable in time and Hölder continuous in space

  • Biagi Stefano,
  • Bramanti Marco

DOI
https://doi.org/10.1515/agms-2024-0009
Journal volume & issue
Vol. 12, no. 1
pp. 734 – 771

Abstract

Read online

We consider degenerate Kolmogorov-Fokker-Planck operators ℒu=∑i,j=1qaij(x,t)uxixj+∑k,j=1Nbjkxkuxj−ut,{\mathcal{ {\mathcal L} }}u=\mathop{\sum }\limits_{i,j=1}^{q}{a}_{ij}\left(x,t){u}_{{x}_{i}{x}_{j}}+\mathop{\sum }\limits_{k,j=1}^{N}{b}_{jk}{x}_{k}{u}_{{x}_{j}}-{u}_{t}, such that the corresponding model operator having constant aij{a}_{ij} is hypoelliptic, translation invariant w.r.t. a Lie group operation in RN+1{{\mathbb{R}}}^{N+1} and 2-homogeneous w.r.t. a family of nonisotropic dilations. We assume that the aij{a}_{ij}’s are globally bounded and Hölder continuous in xx (w.r.t. some intrinsic distance induced by ℒ{\mathcal{ {\mathcal L} }}); the matrix {aij}i,j=1q{\{{a}_{ij}\}}_{i,j=1}^{q} is symmetric and uniformly positive on Rq{{\mathbb{R}}}^{q}. We prove “partial Schauder a priori estimates” on a bounded open set Ω⊂RN+1\Omega \subset {{\mathbb{R}}}^{N+1}, of the kind ∑i,j=1q([uxixj]∗,α,2x+[uxixj]∗,2)≤c{[ℒu]∗,α,2x+[ℒu]∗,2+supΩ∣u∣}\mathop{\sum }\limits_{i,j=1}^{q}({\left[{u}_{{x}_{i}{x}_{j}}]}_{\ast ,\alpha ,2}^{x}+{\left[{u}_{{x}_{i}{x}_{j}}]}_{\ast ,2})\le c\left\{{\left[{\mathcal{ {\mathcal L} }}u]}_{\ast ,\alpha ,2}^{x}+{\left[{\mathcal{ {\mathcal L} }}u]}_{\ast ,2}+\mathop{\sup }\limits_{\Omega }| u| \right\} for suitable functions uu, where [u]∗,α,2x=sup(x,t)≠(y,t)∈Ωd(x,t),(y,t)2+α∣u(x,t)−u(y,t)∣‖x−y‖α[u]∗,2=supξ∈Ωdξ2∣u(ξ)∣.\begin{array}{rcl}{\left[u]}_{\ast ,\alpha ,2}^{x}& =& \mathop{\sup }\limits_{\left(x,t)\ne (y,t)\in \Omega }{d}_{\left(x,t),(y,t)}^{2+\alpha }\frac{| u\left(x,t)-u(y,t)| }{\Vert x-y{\Vert }^{\alpha }}\\ {{[}u]}_{\ast ,2}& =& \mathop{\sup }\limits_{\xi \in \Omega }{d}_{\xi }^{2}| u\left(\xi )| .\end{array} Here ‖⋅‖\Vert \cdot \Vert is a homogeneous norm in RN{{\mathbb{R}}}^{N}, while dξ=dist(ξ,∂Ω){d}_{\xi }={\rm{dist}}\left(\xi ,\partial \Omega ) and dξ,η=min{dξ,dη}{d}_{\xi ,\eta }=\min \left\{{d}_{\xi },{d}_{\eta }\right\}. We also prove that the derivatives uxixj{u}_{{x}_{i}{x}_{j}} are locally Hölder continuous in space and time.

Keywords