Stereoassembled V2O5@FeOOH Hollow Architectures with Lithiation Volumetric Strain Self-Reconstruction for Lithium-Ion Storage
Yao Zhang,
Kun Rui,
Aoming Huang,
Ying Ding,
Kang Hu,
Wenhui Shi,
Xiehong Cao,
Huijuan Lin,
Jixin Zhu,
Wei Huang
Affiliations
Yao Zhang
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
Kun Rui
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
Aoming Huang
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
Ying Ding
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
Kang Hu
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
Wenhui Shi
Center for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China
Xiehong Cao
College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, China
Huijuan Lin
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
Jixin Zhu
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
Wei Huang
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China; Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
Vanadium oxides have recently attracted widespread attention due to their unique advantages and have demonstrated promising chemical and physical properties for energy storage. This work develops a mild and efficient method to stereoassemble hollow V2O5@FeOOH heterostructured nanoflowers with thin nanosheets. These dual-phased architectures possess multiple lithiation voltage plateau and well-defined heterointerfaces facilitating efficient charge transfer, mass diffusion, and self-reconstruction with volumetric strain. As a proof of concept, the resulting V2O5@FeOOH hollow nanoflowers as an anode material for lithium-ion batteries (LIBs) realize high-specific capacities, long lifespans, and superior rate capabilities, e.g., maintaining a specific capacity as high as 985 mAh g−1 at 200 mA g−1 with good cyclability.