Journal of Aeronautical Materials (Apr 2018)
Research Progress on Laser Assisted Machining
Abstract
This paper reviews the recent research progress on laser assisted machining technology. On the experimental research aspect, the technical characteristics of various processes including laser assisted turning, milling, drilling, and grinding have been summarized, and the effects of laser and cutting parameters on machining quality have been stated. Investigations show that properly increasing laser power and decreasing cutting speed and feed rate within limits is propitious to fully soften the workpiece material in the cutting zone, and therefore improves the machinability of the workpiece material and enhances the machining efficiency and quality. Current simulation research on laser assisted machining is mainly focused on the cutting temperature field and machining process. By establishing the model of temperature field, the best temperature range for removing workpiece material can be predicted and the cutting parameters can be optimized. Cutting process simulation discusses the influence of physical quantities in machining such as stress, strain, and temperature, providing a basis for controlling the quality of the machined surface in real operations. In the future, the study on machining mechanism, processing techniques and simulation for optimization should be strengthened, and the data base for laser assisted machining processes should be found, in order to promote the industrial application of the technology.
Keywords