Frontiers in Cardiovascular Medicine (Aug 2022)

Empagliflozin prevents neointima formation by impairing smooth muscle cell proliferation and accelerating endothelial regeneration

  • Jochen Dutzmann,
  • Lena Marie Bode,
  • Katrin Kalies,
  • Laura Korte,
  • Kai Knöpp,
  • Frederik Julius Kloss,
  • Mirja Sirisko,
  • Claudia Pilowski,
  • Susanne Koch,
  • Heiko Schenk,
  • Jan-Marcus Daniel,
  • Jan-Marcus Daniel,
  • Johann Bauersachs,
  • Daniel G. Sedding

DOI
https://doi.org/10.3389/fcvm.2022.956041
Journal volume & issue
Vol. 9

Abstract

Read online

BackgroundEmpagliflozin, an inhibitor of the sodium glucose co-transporter 2 (SGLT2) and developed as an anti-diabetic agent exerts additional beneficial effects on heart failure outcomes. However, the effect of empagliflozin on vascular cell function and vascular remodeling processes remains largely elusive.Methods/ResultsImmunocytochemistry and immunoblotting revealed SGLT2 to be expressed in human smooth muscle (SMC) and endothelial cells (EC) as well as in murine femoral arteries. In vitro, empagliflozin reduced serum-induced proliferation and migration of human diabetic and non-diabetic SMCs in a dose-dependent manner. In contrast, empagliflozin significantly increased the cell count and migration capacity of human diabetic ECs, but not of human non-diabetic ECs. In vivo, application of empagliflozin resulted in a reduced number of proliferating neointimal cells in response to femoral artery wire-injury in C57BL/6J mice and prevented neointima formation. Comparable effects were observed in a streptozocin-induced diabetic model of apolipoprotein E–/– mice. Conclusive to the in vitro-results, re-endothelialization was not significantly affected in C57BL/6 mice, but improved in diabetic mice after treatment with empagliflozin assessed by Evan’s Blue staining 3 days after electric denudation of the carotid artery. Ribonucleic acid (RNA) sequencing (RNA-seq) of human SMCs identified the vasoactive peptide apelin to be decisively regulated in response to empagliflozin treatment. Recombinant apelin mimicked the in vitro-effects of empagliflozin in ECs and SMCs.ConclusionEmpagliflozin significantly reduces serum-induced proliferation and migration of SMCs in vitro and prevents neointima formation in vivo, while augmenting EC proliferation in vitro and re-endothelialization in vivo after vascular injury. These data document the functional impact of empagliflozin on vascular human SMCs and ECs and vascular remodeling in mice for the first time.

Keywords