Energies (Dec 2022)
Design and Verification of Petri-Net-Based Cyber-Physical Systems Oriented toward Implementation in Field-Programmable Gate Arrays—A Case Study Example
Abstract
This paper presents a novel design approach of a Petri-net-based cyber-physical system (CPS). The idea is oriented toward implementation in a field-programmable gate array (FPGA). The proposed technique permits error detection in the system at the early specification stage in order to reduce the time and prototyping cost of the CPS. Due to the state explosion problem, the traditional verification methods have exponential computational complexity. In contrast, we show that under certain assumptions, the proposed algorithm is able to detect possible errors in the system even in cubic O(|T|2|P|) time. Furthermore, all the required steps of the proposed design method are presented and discussed. The idea is illustrated by a real-life case study example of a traffic light crossroad. The system was modelled, analysed, implemented, and finally validated within the FPGA device (Virtex-5 family).
Keywords