Bio-Piezoelectric Ceramic Composites for Electroactive Implants—Biological Performance
Beatriz Ferreira Fernandes,
Neusa Silva,
Joana Faria Marques,
Mariana Brito Da Cruz,
Laura Tiainen,
Michael Gasik,
Óscar Carvalho,
Filipe Samuel Silva,
João Caramês,
António Mata
Affiliations
Beatriz Ferreira Fernandes
Oral Biology and Biochemistry Research Group—Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
Neusa Silva
Oral Biology and Biochemistry Research Group—Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
Joana Faria Marques
Oral Biology and Biochemistry Research Group—Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
Mariana Brito Da Cruz
Oral Biology and Biochemistry Research Group—Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
Laura Tiainen
Department of Mechanical Engineering, Center for Microelectromechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal
Michael Gasik
Department of Chemical and Metallurgical Engineering, Aalto University, 02780 Espoo, Finland
Óscar Carvalho
Department of Mechanical Engineering, Center for Microelectromechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal
Filipe Samuel Silva
Department of Mechanical Engineering, Center for Microelectromechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal
João Caramês
Implant & Tissue Regeneration Group—Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), LIBPhys-FTC UID/FIS/04559/2013, Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
António Mata
Oral Biology and Biochemistry Research Group—Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), LIBPhys-FCT UID/FIS/04559/2013, Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
Barium titanate (BaTiO3) piezoelectric ceramic may be a potential alternative for promoting osseointegration due to its piezoelectric properties similar to bone electric potentials generated in loading function. In this sense, the aim of this in vitro study was to evaluate the cellular response of human osteoblasts and gingival fibroblasts as well as the impact on S. oralis when in contact with BaTiO3 functionalized zirconia implant surfaces with piezoelectric properties. Zirconia discs with BaTiO3 were produced and contact poling (piezo activation) was performed. Osteoblasts (hFOB 1.19), fibroblasts (HGF hTERT) and S. oralis were culture on discs. Cell viability and morphology, cell differentiation markers, bacterial adhesion and growth were evaluated. The present study suggests that zirconia composite surfaces with the addition of piezoelectric BaTiO3 are not cytotoxic to peri-implant cells. Also, they seem to promote a faster initial osteoblast differentiation. Moreover, these surfaces may inhibit the growth of S. oralis by acting as a bacteriostatic agent over time. Although the piezoelectric properties do not affect the cellular inflammatory profile, they appear to enable the initial adhesion of bacteria, however this is not significant over the entire testing period. Furthermore, the addition of non-poled BaTiO3 to zirconia may have a potential reduction effect on IL-6 mediated-inflammatory activity in fibroblasts.