Regenerative Therapy (Jun 2024)
Therapeutic potential of dedifferentiated fat cells in a rat model of osteoarthritis of the knee
Abstract
Introduction: Mature adipocyte-derived dedifferentiated fat cells (DFATs) represent a subtype of multipotent cells that exhibit comparable phenotypic and functional characteristics to adipose-derived stem cells (ASCs). In this study, we assessed the chondroprotective properties of intra-articularly administrated DFATs in a rat model of osteoarthritis (OA). We also investigated in vitro the expression of anti-inflammatory and chondroprotective genes in DFATs prepared from the infrapatellar fat pad (IFP) and subcutaneous adipose-tissue (SC) of human origin. Methods: In the cell transplantation experiment, rats were assigned to the DFAT and Control group (n = 10 in each group) and underwent anterior cruciate ligament transection (ACLT) accompanied by medial meniscus resection (MMx) to induce OA. One week later, they received intra-articular injections of 1 × 106 DFATs (DFAT group) or PBS (control group) four times, with a weekly administration frequency. Macroscopic and microscopic evaluations were conducted five weeks post-surgery. In the in vitro experiments. DFATs derived from the IFP (IFP-DFATs) and SC (SC-DFATs) were prepared from donor-matched tissue samples (n = 3). The gene expression of PTGS2, TNFAIP6, PRG4, BMP2, and BMP6 under TNF-α or IFN-γ stimulation in these cells was evaluated using RT-PCR. Furthermore, the effect of co-culturing synovial fibroblasts with DFATs on the gene expression of ADAMTS4 and IL-6 were evaluated. Results: Intra-articular injections of DFATs significantly inhibited cartilage degeneration in the rat OA model induced by ACLT and MMx. RT-PCR analysis revealed that both IFP-DFATs and SC-DFATs upregulated the expression of genes involved in immune regulation, anti-inflammation, and cartilage protection such as PTGS2, TNFAIP6, and BMP2, under stimulation by inflammatory cytokines. Co-culture with DFATs suppressed the expression of ADAMTS4 and IL6 in synovial fibroblasts. Conclusions: The intra-articular injection of DFATs resulted in chondroprotective effects in the rat OA model. Both SC-DFATs and IFP-DFATs induced the expression of anti-inflammatory and chondroprotective genes in vitro. These results indicate that DFATs appear to possess therapeutic potential in inhibiting cartilage degradation and could serve as a promising cellular resource for OA treatment.