iScience (Feb 2022)

Single-cell resolution of MET- and EMT-like programs in osteoblasts during zebrafish fin regeneration

  • W. Joyce Tang,
  • Claire J. Watson,
  • Theresa Olmstead,
  • Christopher H. Allan,
  • Ronald Y. Kwon

Journal volume & issue
Vol. 25, no. 2
p. 103784

Abstract

Read online

Summary: Zebrafish regenerate fin rays following amputation through epimorphic regeneration, a process that has been proposed to involve the epithelial-to-mesenchymal transition (EMT). We performed single-cell RNA sequencing (scRNA-seq) to elucidate osteoblastic transcriptional programs during zebrafish caudal fin regeneration. We show that osteoprogenitors are enriched with components associated with EMT and its reverse, mesenchymal-to-epithelial transition (MET), and provide evidence that the EMT markers cdh11 and twist2 are co-expressed in dedifferentiating cells at the amputation stump at 1 dpa, and in differentiating osteoblastic cells in the regenerate, the latter of which are enriched in EMT signatures. We also show that esrp1, a regulator of alternative splicing in epithelial cells that is associated with MET, is expressed in a subset of osteoprogenitors during outgrowth. This study provides a single cell resource for the study of osteoblastic cells during zebrafish fin regeneration, and supports the contribution of MET- and EMT-associated components to this process.

Keywords