Environment International (May 2021)
Evidence for selection of multi-resistant E. coli by hospital effluent
Abstract
There is a risk that residues of antibiotics and other antimicrobials in hospital and municipal wastewaters could select for resistant bacteria. Still, direct experimental evidence for selection is lacking. Here, we investigated if effluent from a large Swedish hospital, as well as influent and effluent from the connected municipal wastewater treatment plant (WWTP) select for antibiotic resistant Escherichia coli in three controlled experimental setups. Exposure of sterile-filtered hospital effluent to a planktonic mix of 149 different E. coli wastewater isolates showed a strong selection of multi-resistant strains. Accordingly, exposure to a complex wastewater community selected for strains resistant to several antibiotic classes. Exposing individual strains with variable resistance patterns revealed a rapid bactericidal effect of hospital effluent on susceptible, but not multi-resistant E. coli. No selection was observed after exposure to WWTP effluent, while exposure to WWTP influent indicated a small selective effect for ceftazidime and cefadroxil resistant strains, and only in the E. coli mix assay. An analysis of commonly used antibiotics and non-antibiotic pharmaceuticals in combination with growth and resistance pattern of individual E. coli isolates suggested a possible contribution of ciprofloxacin and β-lactams to the selection by hospital effluent. However, more research is needed to clarify the contribution from different selective agents. While this study does not indicate selection by the studied WWTP effluent, there is some indications of selective effects by municipal influent on β-lactam-resistant strains. Such effects may be more pronounced in countries with higher antibiotic use than Sweden. Despite the limited antibiotic use in Sweden, the hospital effluent strongly and consistently selected for multi-resistance, indicating widespread risks. Hence, there is an urgent need for further evaluation of risks for resistance selection in hospital sewers, as well as for strategies to remove selective agents and resistant bacteria.