Effects of Active Ingredients in Alcoholic Beverages and Their De-Alcoholized Counterparts on High-Fat Diet Bees: A Comparative Study
Guanghe Fan,
Xiaofei Wang,
Cuicui Gao,
Xiping Kang,
Huimin Xue,
Weidong Huang,
Jicheng Zhan,
Yilin You
Affiliations
Guanghe Fan
Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China
Xiaofei Wang
College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China
Cuicui Gao
Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China
Xiping Kang
Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China
Huimin Xue
Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China
Weidong Huang
Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China
Jicheng Zhan
Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China
Yilin You
Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China
The mechanisms by which alcohol, alcoholic beverages, and their de-alcoholized derivatives affect animal physiology, metabolism, and gut microbiota have not yet been clarified. The polyphenol, monosaccharide, amino acid, and organic acid contents of four common alcoholic beverages (Chinese Baijiu, beer, Chinese Huangjiu, and wine) and their de-alcoholized counterparts were analyzed. The research further explored how these alcoholic beverages and their non-alcoholic versions affect obesity and gut microbiota, using a high-fat diet bee model created with 2% palm oil (PO). The results showed that wine, possessing the highest polyphenol content, and its de-alcoholized form, particularly when diluted five-fold (WDX5), markedly improved the health markers of PO-fed bees, including weight, triglycerides, and total cholesterol levels in blood lymphocytes. WDX5 treatment notably increased the presence of beneficial microbes such as Bartonella, Gilliamella, and Bifidobacterium, while decreasing Bombilactobacillus abundance. Moreover, WDX5 was found to closely resemble sucrose water (SUC) in terms of gut microbial function, significantly boosting short-chain fatty acids, lipopolysaccharide metabolism, and associated enzymatic pathways, thereby favorably affecting metabolic regulation and gut microbiota stability in bees.