IEEE Access (Jan 2017)
A New Single Image Super-Resolution Method Based on the Infinite Mixture Model
Abstract
As a powerful nonparametric Bayesian model, the infinite mixture model has been successfully used in machine learning and computer vision. The success of the infinite mixture model owes to the capability clustering and density estimation. In this paper, we propose a nonparametric Bayesian model for single-image super-resolution. Specifically, we combine the Dirichlet process and Gaussian process regression for estimating the distribution of the training patches and modeling the relationship between the low-resolution and high-resolution patches: 1) the proposed method groups the training patches by utilizing the clustering property of Dirichlet process; 2) the proposed method relates the low-resolution and high-resolution patches by predicting the property of Gaussian process; and 3) the mentioned two points are not independent but jointly learned. Hence, the proposed method can make full use of the nonparametric Bayesian model. First, the Dirichlet process mixture model is used to obtain more accurate clusters for training patches. Second, Gaussian process regression is established on each cluster, and this directly reduces the computational complexity. Finally, the two procedures are learned simultaneously to gain the suitable clusters with the ability of prediction. The parameters can be inferred simply via the Gibbs sampling technique. Thorough super-resolution experiments on various images demonstrate that the proposed method is superior to some state-of-the-art methods.
Keywords