International Journal of Optics (Jan 2020)

Swimmer’s Head Detection Based on a Contrario and Scaled Composite JTC Approaches

  • D. Benarab,
  • T. Napoléon,
  • A. Alfalou,
  • A. Verney,
  • P. Hellard

DOI
https://doi.org/10.1155/2020/4145938
Journal volume & issue
Vol. 2020

Abstract

Read online

In order to accompany the swimming coaches in evaluating high-level swimmers, we developed a prototype for instantaneous speed estimation. To achieve this, we proposed and validated, in a previous work, a swimmer tracking system based on data fusion. However, the initialization phase is done manually, and our aim, in this paper, is to automate this process. First, we propose a region of interest localization module that allows the detection of the first appearance of the swimmer in the lane as well as the restriction of the region of interest around him. This module is based on the method a contrario which consists of modeling the random noise corresponding to the water and detecting the structured movement relative to the swimmer motion. To do that, we calibrate the pool using DLT (Direct Linear Transform) technique, extract the concerned lane, apply the frame difference approach to detect the moving objects, and then decompose the lane into blocs and classify them into swimmer motion or noise. Second, in order to detect the swimmer’s head, we propose the Scaled Composite JTC which is based on the NL-JTC correlation technique. The input plane of this latter includes a target and a reference image. The first is the region of interest detected by the method a contrario. The second consists of a Scaled Composite Reference. The tests conducted on real video sequences of French swimming championships (Limoges 2015) showed very good results in terms of region of interest localization and swimmer’s head detection which allows a reliable initialization for the tracking system.