Scientific Reports (Jun 2021)

Radius-optimized efficient template matching for lesion detection from brain images

  • Subhranil Koley,
  • Pranab K. Dutta,
  • Iman Aganj

DOI
https://doi.org/10.1038/s41598-021-90147-0
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 21

Abstract

Read online

Abstract Computer-aided detection of brain lesions from volumetric magnetic resonance imaging (MRI) is in demand for fast and automatic diagnosis of neural diseases. The template-matching technique can provide satisfactory outcome for automatic localization of brain lesions; however, finding the optimal template size that maximizes similarity of the template and the lesion remains challenging. This increases the complexity of the algorithm and the requirement for computational resources, while processing large MRI volumes with three-dimensional (3D) templates. Hence, reducing the computational complexity of template matching is needed. In this paper, we first propose a mathematical framework for computing the normalized cross-correlation coefficient (NCCC) as the similarity measure between the MRI volume and approximated 3D Gaussian template with linear time complexity, $${\mathbf{\mathcal{O}}}\left( {{\varvec{a}}_{{{\varvec{max}}}} {\varvec{N}}} \right)$$ O a max N , as opposed to the conventional fast Fourier transform (FFT) based approach with the complexity $${\mathbf{\mathcal{O}}}\left( {{\varvec{a}}_{{{\varvec{max}}}} {\varvec{N}}\log {\varvec{N}}} \right)$$ O a max N log N , where $${\varvec{N}}$$ N is the number of voxels in the image and $${\varvec{a}}_{{{\varvec{max}}}}$$ a max is the number of tried template radii. We then propose a mathematical formulation to analytically estimate the optimal template radius for each voxel in the image and compute the NCCC with the location-dependent optimal radius, reducing the complexity to $${\mathbf{\mathcal{O}}}\left( {\varvec{N}} \right)$$ O N . We test our methods on one synthetic and two real multiple-sclerosis databases, and compare their performances in lesion detection with FFT and a state-of-the-art lesion prediction algorithm. We demonstrate through our experiments the efficiency of the proposed methods for brain lesion detection and their comparable performance with existing techniques.