Molecules (Aug 2020)
<i>N</i>-Halamine Hydantoin-Containing Chitosan: Synthesis, Characterization, Thermal and Photolytic Stability Studies
Abstract
Current demand for new protective materials ensuring sterility is systematically growing. The purpose of this work was the synthesis of the biocidal N-halamine hydantoin-containing chitosan (CS-CMH-Cl) and characterization of its properties. The functionalization of the chitosan by 5-hydantoinacetic acid substitution leads to obtaining the CS-CMH polymer, which was chlorinated in next step to transform N-H into N-Cl bonds. In this study, the possibility of forming two biocidal N-Cl bonds in hydantoin ring, grafted onto chitosan chains, was proved. The structure and stability of the prepared material was confirmed by spectroscopic (FTIR, NMR, colorimetric test) and microscopic analyses (SEM, AFM). Surface properties were investigated based on contact-angle measurements. In addition, the thermal and photochemical stability of the obtained samples were determined as functional features, determining the range of potential use. It was found that both modified chitosan polymers (CS-CMH and CS-CMH-Cl) were characterized by the smaller thermal stability and more hydrophilic and rougher surface than unmodified CS. Photooxidative degradation of the obtained materials was observed mainly on the sample surface. After irradiation, the surfaces became more hydrophilic—especially in the case of the CS-CMH-Cl—which is advantageous from the point of view of the antibacterial properties. Antibacterial tests against S. aureus and E. coli confirmed the antibacterial activities of received CS-CMH-Cl material.
Keywords