Current Research in Food Science (Jan 2023)
Encapsulation of vitexin-rhamnoside based on zein/pectin nanoparticles improved its stability and bioavailability
Abstract
To improve the solubility, stability, and bioavailability of vitexin-rhamnoside (VR) isolated from hawthorn, it was encapsulated by the zein-pectin nanoparticles system. When the mass ratio of zein to pectin was 1:4, the particle size of nanoparticles was 222.7 nm, and the encapsulation efficiency of VR was 67%. Analysis with the scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) revealed that the zein-VR-pectin nanoparticles were spherical and uniformly distributed. The hydrogen bonding and electrostatic interactions were the main forces to assemble the nanoparticles. The nanoparticle had good stability at pH 3–8.5 with particle sizes ranging from 234 to 251 nm, and the nanoparticles were able to resist the relatively lower ionic strength. In vitro simulated digestion and rat in vivo intestinal perfusion experiments showed that the nanoparticles exhibited significant slow-release properties and the highest absorption rate in the duodenal segment of rats, with Ka and Papp of 0.830 ± 0.11 and 17.004 ± 1.09. These results provided a theoretical and technological approach for the construction of flavonoids delivery system with slow-release properties and improved bioavailability.