Materials (Jun 2023)

Lattice Strain Relaxation and Compositional Control in As-Rich GaAsP/(100)GaAs Heterostructures Grown by MOVPE

  • Paola Prete,
  • Daniele Calabriso,
  • Emiliano Burresi,
  • Leander Tapfer,
  • Nico Lovergine

DOI
https://doi.org/10.3390/ma16124254
Journal volume & issue
Vol. 16, no. 12
p. 4254

Abstract

Read online

The fabrication of high-efficiency GaAsP-based solar cells on GaAs wafers requires addressing structural issues arising from the materials lattice mismatch. We report on tensile strain relaxation and composition control of MOVPE-grown As-rich GaAs1−xPx/(100)GaAs heterostructures studied by double-crystal X-ray diffraction and field emission scanning electron microscopy. Thin (80–150 nm) GaAs1−xPx epilayers appear partially relaxed (within 1−12% of the initial misfit) through a network of misfit dislocations along the sample [011] and [011−] in plane directions. Values of the residual lattice strain as a function of epilayer thickness were compared with predictions from the equilibrium (Matthews–Blakeslee) and energy balance models. It is shown that the epilayers relax at a slower rate than expected based on the equilibrium model, an effect ascribed to the existence of an energy barrier to the nucleation of new dislocations. The study of GaAs1−xPx composition as a function of the V-group precursors ratio in the vapor during growth allowed for the determination of the As/P anion segregation coefficient. The latter agrees with values reported in the literature for P-rich alloys grown using the same precursor combination. P-incorporation into nearly pseudomorphic heterostructures turns out to be kinetically activated, with an activation energy EA = 1.41 ± 0.04 eV over the entire alloy compositional range.

Keywords