Mathematics (Jan 2023)

The Numerical Solution of the External Dirichlet Generalized Harmonic Problem for a Sphere by the Method of Probabilistic Solution

  • Mamuli Zakradze,
  • Zaza Tabagari,
  • Nana Koblishvili,
  • Tinatin Davitashvili,
  • Jose Maria Sanchez,
  • Francisco Criado-Aldeanueva

DOI
https://doi.org/10.3390/math11030539
Journal volume & issue
Vol. 11, no. 3
p. 539

Abstract

Read online

In the present paper, an algorithm for the numerical solution of the external Dirichlet generalized harmonic problem for a sphere by the method of probabilistic solution (MPS) is given, where “generalized” indicates that a boundary function has a finite number of first kind discontinuity curves. The algorithm consists of the following main stages: (1) the transition from an infinite domain to a finite domain by an inversion; (2) the consideration of a new Dirichlet generalized harmonic problem on the basis of Kelvin’s theorem for the obtained finite domain; (3) the numerical solution of the new problem for the finite domain by the MPS, which in turn is based on a computer simulation of the Weiner process; (4) finding the probabilistic solution of the posed generalized problem at any fixed points of the infinite domain by the solution of the new problem. For illustration, numerical examples are considered and results are presented.

Keywords