International Journal of Molecular Sciences (Oct 2020)

Increased Skeletal Muscle Fiber Cross-Sectional Area, Muscle Phenotype Shift, and Altered Insulin Signaling in Rat Hindlimb Muscles in a Prenatally Androgenized Rat Model for Polycystic Ovary Syndrome

  • Auryana DeChick,
  • Rebecca Hetz,
  • Jack Lee,
  • Diana L. Speelman

DOI
https://doi.org/10.3390/ijms21217918
Journal volume & issue
Vol. 21, no. 21
p. 7918

Abstract

Read online

Women with polycystic ovary syndrome (PCOS) are reported to have greater lean mass and insulin resistance. To examine muscular changes in a prenatally androgenized (PNA) rat model for PCOS, Sprague–Dawley rats were exposed to 5 mg testosterone or vehicle daily on gestational days 16–19. At 15 weeks of age, endurance on a rota-rod treadmill was measured. At 16 weeks of age, fasting blood glucose and insulin, hindlimb skeletal muscle mass, muscle fiber cross-sectional area (CSA) and composition, and intra- and peri-muscular lipid droplets were examined. Expression of mitochondrial marker ATP synthase and insulin signaling proteins were also investigated. Compared with controls, PNA female rats demonstrated greater total body and hindlimb muscle weights, greater muscle fiber CSA, and trending reduced time on the rota-rod. An increase in fibers co-expressing the slow and fast isoforms of myosin (90 vs. 86%, p p p 636/9-phosphorylated IRS1 were altered in PNA rat hindlimb muscles. Together, skeletal muscle alterations in hindlimb muscles of a PNA rat model for PCOS may represent consequences of, or adaptations to, insulin resistance in this model.

Keywords