BMC Genomics (May 2023)
Unraveling transcriptomics of sorghum grain carotenoids: a step forward for biofortification
Abstract
Abstract Background Sorghum (Sorghum bicolor [L.] Moench) is a promising target for pro-vitamin A biofortification as it is a global staple crop, particularly in regions where vitamin A deficiency is prevalent. As with most cereal grains, carotenoid concentrations are low in sorghum, and breeding could be a feasible strategy to increase pro-vitamin A carotenoids to biologically relevant concentrations. However, there are knowledge gaps in the biosynthesis and regulation of sorghum grain carotenoids, which can limit breeding effectiveness. The aim of this research was to gain an understanding of the transcriptional regulation of a priori candidate genes in carotenoid precursor, biosynthesis, and degradation pathways. Results We used RNA sequencing of grain to compare the transcriptional profile of four sorghum accessions with contrasting carotenoid profiles through grain development. Most a priori candidate genes involved in the precursor MEP, carotenoid biosynthesis, and carotenoid degradation pathways were found to be differentially expressed between sorghum grain developmental stages. There was also differential expression of some of the a priori candidate genes between high and low carotenoid content groups at each developmental time point. Among these, we propose geranyl geranyl pyrophosphate synthase (GGPPS), phytoene synthase (PSY), and phytoene desaturase (PDS) as promising targets for pro-vitamin A carotenoid biofortification efforts in sorghum grain. Conclusions A deeper understanding of the controls underlying biosynthesis and degradation of sorghum grain carotenoids is needed to advance biofortification efforts. This study provides the first insights into the regulation of sorghum grain carotenoid biosynthesis and degradation, suggesting potential gene targets to prioritize for molecular breeding.
Keywords