Frontiers in Marine Science (Nov 2024)

Species identification of modern and archaeological shark and ray skeletal tissues using collagen peptide mass fingerprinting

  • Michael Buckley,
  • Ellie-May Oldfield,
  • Cristina Oliveira,
  • Clara Boulanger,
  • Clara Boulanger,
  • Andrew C. Kitchener,
  • Andrew C. Kitchener,
  • Nicole R. Fuller,
  • Traci Ardren,
  • Victor D. Thompson,
  • Scott M. Fitzpatrick,
  • Michelle J. LeFebvre

DOI
https://doi.org/10.3389/fmars.2024.1500595
Journal volume & issue
Vol. 11

Abstract

Read online

IntroductionElasmobranchs, such as sharks and rays, are among the world’s most endangered vertebrates, with over 70% loss in abundance over the past 50 years due to human impacts. Zooarchaeological baselines of elasmobranch diversity, distribution, and exploitation hold great promise for contributing essential historical contexts in the assessment of contemporary patterns in their taxonomic diversity and vulnerability to human-caused extinction. Yet, the historical ecology of elasmobranchs receives relatively less archaeological attention compared to that of ray-finned fishes or marine mammals, largely due to issues of taxonomic resolution across zooarchaeological identifications.MethodsWe explore the use of Zooarchaeology by Mass Spectrometry (ZooMS) for species identification in this unstudied group, using an archaeological case study from the marine environments of the Florida Keys, a marine biodiversity hotspot that is home to an array of elasmobranch species and conservation efforts. By comparison with 39 modern reference species, we could distinguish 12 taxa within the zooarchaeological assemblage from the Clupper archaeological site (Upper Matecumbe Key) that included nine sharks, two rays and a sawfish.Results and discussionThe results indicate that, through additional complexity of the collagen peptide mass fingerprint, obtained due to the presence of the cartilaginous type II collagen, ZooMS collagen peptide mass fingerprinting provides exceptionally high taxonomic resolution in this group, yielding species-level identifications in all cases where sufficient reference material was used. This case study also highlights the added value of ZooMS for taxa that are more difficult to distinguish in zooarchaeological analyses, such as vertebrae of the Atlantic sharpnose shark (Rhizoprionodon terraenovae) and the hammerhead sharks (Sphyrna spp.) in the Florida Keys. Therefore, the application of collagen peptide mass fingerprinting to elasmobranchs offers great potential to improve our understanding of their archaeological past and historical ecology.

Keywords