Jin'gangshi yu moliao moju gongcheng (Jun 2022)
Laser dressing technology for micro-grooves on the surface of metal-bonded diamond wheels
Abstract
In order to solve the difficult problem of dressing micro-grooves on the surface of metal-bonded diamond wheel, an infrared nanosecond laser was used to carry out the dressing test. The influences of laser average power, pulse repetition frequency, laser ablation time and other factors on the material removal of metal-bonded diamond grinding wheel was investigated. A gradient step laser dressing process was proposed for U-shaped and V-shaped grinding wheel micro-grooves. The results show that the actual contour of the grinding wheel micro-groove after dressing is compared with the designed contour, the maximum absolute value of the relative error of the actual width at the top and bottom is 4.4%, and the maximum absolute value of the relative error of the actual depth is 9.6%. The edge of the sapphire wafer with a diameter of 4 inches (10.16 cm) is chamfered with the V-shaped micro-groove of the trimmed grinding wheel. The sharp edge of the wafer is trimmed into a regular shape, and the symmetry of the edge contour is good, which is consistent with the micro-groove contour of the surface of the laser trimmed grinding wheel. The feasibility of laser shaping and dressing of the micro-groove on the surface of metal-bonded diamond grinding wheel is verified.
Keywords