Fisheries and Aquatic Sciences (Nov 2016)
Transgene chgH-rfp expression at developmental stages and reproductive status in marine medaka (Oryzias dancena)
Abstract
Abstract Background The transgenic approach using estrogen-responsive regulator in fish has been given much attention as a potential means to detect and/or address estrogen-related aquatic pollutions. In order to address the development stage- and reproduction status-dependent expression patterns of the chgH-rfp transgene (red fluorescent protein transgene driven by choriogenin H promoter) in marine medaka Oryzias dancena, naturally occurring red fluorescent protein (RFP) signals under non-exposed conditions as well as the transgenically induced RFP signals under estrogen-exposed conditions were assayed. Results Female transgenics begun to show naturally occurring RFP signals from the age of 7 weeks post hatching (WPH) without experimental estrogen exposure. Afterward, these RFP signals in female transgenics became robust with the progress of ovarian maturation. On the other hand, male transgenics did not show any naturally occurring RFP signal under non-exposed conditions irrespective of developmental stages and maturation statue. Upon exposures using estradiol-17β (E2) and 17α-ethinylestradiol (EE2), RFP signals were significantly induced specifically in the livers of transgenic males. Conclusions Male chgH-rfp transgenics were able to keep the “off” state of RFP expression during their entire life cycle unless exposed to exogenous estrogens. Owing to their tight regulation capability of estrogen-responsive transgene, transgenesis of chgH-rfp in male marine medaka could offer a useful model system for future ecotoxicogenomic studies regarding estrogenicity-related issues in aquatic and marine environments.
Keywords