Convection of Physical Quantities of Random Density
Elisabetta Barletta,
Sorin Dragomir,
Francesco Esposito
Affiliations
Elisabetta Barletta
Dipartimento di Matematica, Informatica ed Economia, Università degli Studi della Basilicata, Campus di Macchia Romana, Via dell’Ateneo Lucano, 85100 Potenza, Italy
Sorin Dragomir
Dipartimento di Matematica, Informatica ed Economia, Università degli Studi della Basilicata, Campus di Macchia Romana, Via dell’Ateneo Lucano, 85100 Potenza, Italy
Francesco Esposito
Dipartimento di Matematica, Informatica ed Economia, Università degli Studi della Basilicata, Campus di Macchia Romana, Via dell’Ateneo Lucano, 85100 Potenza, Italy
We study the random flow, through a thin cylindrical tube, of a physical quantity of random density, in the presence of random sinks and sources. We model convection in terms of the expectations of the flux and density and solve the initial value problem for the resulting convection equation. We propose a difference scheme for the convection equation, that is both stable and satisfies the Courant–Friedrichs–Lewy test, and estimate the difference between the exact and approximate solutions.