International Journal of Plant Biology (May 2024)
Liming and Plastering Modify Root Anatomy in <i>Pennisetum purpureum</i> Schum
Abstract
Elephant grass (Pennisetum purpureum) exhibits high biomass production, is readily accepted by animals, and demonstrates good adaptation to the various soil types. Consequently, the utilization of P. purpureum shows promise in amending surface and subsurface soil acidity, thereby contributing to increased crop yield while enhancing water and nutrient utilization efficiency. In this study, the effects of corrective processes involving limestone and plastering on the root anatomy of P. purpureum were investigated. Roots subjected to different treatments were fixed, dehydrated, and embedded in historesin. Subsequently, samples were sectioned in a microtome, stained with toluidine blue for the conventional analysis, or submitted to the histochemical test. The qualitative and quantitative anatomical analyses were conducted to evaluate the impact of liming and plastering on the root structure of P. purpureum. The results showed that liming led to an increase in both the number and diameter of vessel elements, while plastering reduced these parameters compared to the acidic soils. Additionally, liming induced the formation of suberized endodermal cell walls. These findings highlight the significance of effective soil management to obtain P. purpureum plants with a well-developed vascular system, thereby promoting optimal plant performance in agricultural crops.
Keywords