Pamukkale University Journal of Engineering Sciences (Apr 2021)
Derin öğrenme yöntemleri ve kelime yerleştirme modelleri kullanılarak Parkinson hastalığının duygu analiziyle değerlendirilmesi
Abstract
Parkinson hastalığı, hastanın yaşam kalitesini etkileyen, önemli sosyal ve ekonomik etkileri olan ve semptomların aşamalı görünümü nedeniyle erken teşhis edilmesi güç olan yaygın bir nörolojik hastalıktır. Parkinson hastalığının Twitter gibi sosyal medya platformlarında tartışılması, hastaların Parkinson hastalığının hem tanı hem de tedavi aşamasında birbirleriyle iletişim kurduğu bir platform sağlar. Bu çalışmanın amacı, derin öğrenme ve kelime yerleştirme modellerini kullanarak insanların Parkinson hastalığı ile ilgili duygu analizlerini değerlendirmek ve karşılaştırmaktır. Bildiğimiz kadarıyla, bu çalışma Parkinson hastalığını sosyal medya aracılığıyla kelime yerleştirme modelleri ve derin öğrenme algoritmaları kullanarak analiz etmek için yapılan ilk çalışmadır. Bu çalışmada, kelime yerleştirme modelleri olarak Word2Vec, GloVe ve FastText; Evrişimsel Sinir Ağları (CNN'ler), Tekrarlayan Sinir Ağları (RNN'ler) ve Uzun Kısa Süreli Bellek Ağları (LSTM'ler) derin öğrenme teknikleri olarak harmanlanmış ve sınıflandırma amacıyla kullanılmıştır. Kelime yerleştirme modelleri ve derin öğrenme algoritmaları kullanılarak Parkinson hastalığı hakkında kullanıcı yorumlarının duygularını analiz etmek amacıyla kapsamlı deneyler İngilizce Twitter veri kümesi üzerinde gerçekleştirilmiştir. Deney sonuçlarında, Word2Vec kelime yerleştirme modelinin CNN derin öğrenme algoritmasıyla harmanlanması sonucu %75.12 doğruluk ile kayda değer bir sınıflandırma başarısı gözlemlenmiştir. Bu çalışma, hastaların gereksinimlerini anlamak için kelime yerleştirme modelleri ve derin öğrenme algoritmalarını kullanma etkinliğini ve Parkinson hastalarının ve yakınlarının duygularını sosyal medya aracılığı ile analiz ederek tedavi sürecine değerli bir katkı sağladığını göstermektedir.