Sensors (Oct 2024)

Deep Recyclable Trash Sorting Using Integrated Parallel Attention

  • Hualing Lin,
  • Xue Zhang,
  • Junchen Yu,
  • Ji Xiang,
  • Hui-Liang Shen

DOI
https://doi.org/10.3390/s24196434
Journal volume & issue
Vol. 24, no. 19
p. 6434

Abstract

Read online

Sorting recyclable trash is critical to reducing energy consumption and mitigating environmental pollution. Currently, trash sorting heavily relies on manpower. Computer vision technology enables automated trash sorting. However, existing trash image classification datasets contain a large number of images without backgrounds. Moreover, the models are vulnerable to background interference when categorizing images with complex backgrounds. In this work, we provide a recyclable trash dataset that supports model training and design a model specifically for trash sorting. Firstly, we introduce the TrashIVL dataset, an image dataset for recyclable trash sorting encompassing five classes (TrashIVL-5). All images are collected from public trash datasets, and the original images were captured by RGB imaging sensors, containing trash items with real-life backgrounds. To achieve refined recycling and improve sorting efficiency, the TrashIVL dataset can be further categorized into 12 classes (TrashIVL-12). Secondly, we propose the integrated parallel attention module (IPAM). Considering the susceptibility of sensor-based systems to background interference in real-world trash sorting scenarios, our IPAM is specifically designed to focus on the essential features of trash images from both channel and spatial perspectives. It can be inserted into convolutional neural networks (CNNs) as a plug-and-play module. We have constructed a recyclable trash sorting network building upon the IPAM, which produces an acuracy of 97.42% on TrashIVL-5 and 94.08% on TrashIVL-12. Our work is an effective attempt of computer vision in recyclable trash sorting. It makes a positive contribution to environmental protection and sustainable development.

Keywords