AIMS Mathematics (Jul 2020)
Some spectral sufficient conditions for a graph being pancyclic
Abstract
Let $G(V,E)$ be a simple connected graph of order $n$. A graph of order $n$ is called pancyclic if it contains all the cycles $C_k$ for $k\in \{3,4,\cdot\cdot\cdot,n\}$. In this paper, some new spectral sufficient conditions for the graph to be pancyclic are established in terms of the edge number, the spectral radius and the signless Laplacian spectral radius of the graph.
Keywords