Frontiers in Plant Science (Mar 2023)
Phylogenomic analyses of Sapindales support new family relationships, rapid Mid-Cretaceous Hothouse diversification, and heterogeneous histories of gene duplication
- Elizabeth M. Joyce,
- Elizabeth M. Joyce,
- Elizabeth M. Joyce,
- Marc S. Appelhans,
- Marc S. Appelhans,
- Sven Buerki,
- Martin Cheek,
- Jurriaan M. de Vos,
- José R. Pirani,
- Alexandre R. Zuntini,
- Julien B. Bachelier,
- Michael J. Bayly,
- Martin W. Callmander,
- Marcelo F. Devecchi,
- Susan K. Pell,
- Milton Groppo,
- Porter P. Lowry,
- Porter P. Lowry,
- John Mitchell,
- Carolina M. Siniscalchi,
- Jérôme Munzinger,
- Harvey K. Orel,
- Caroline M. Pannell,
- Caroline M. Pannell,
- Caroline M. Pannell,
- Lars Nauheimer,
- Lars Nauheimer,
- Hervé Sauquet,
- Andrea Weeks,
- Alexandra N. Muellner-Riehl,
- Alexandra N. Muellner-Riehl,
- Ilia J. Leitch,
- Olivier Maurin,
- Félix Forest,
- Katharina Nargar,
- Katharina Nargar,
- Kevin R. Thiele,
- William J. Baker,
- Darren M. Crayn,
- Darren M. Crayn
Affiliations
- Elizabeth M. Joyce
- Systematics, Biodiversity and Evolution of Plants, Ludwig-Maximilians-Universität München, Munich, Germany
- Elizabeth M. Joyce
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
- Elizabeth M. Joyce
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- Marc S. Appelhans
- Department of Systematics, Biodiversity and Evolution of Plants, University of Göttingen, Goettingen, Germany
- Marc S. Appelhans
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
- Sven Buerki
- Department of Biological Sciences, Boise State University, Boise, ID, United States
- Martin Cheek
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Jurriaan M. de Vos
- Department of Environmental Sciences, University Basel, Basel, Switzerland
- José R. Pirani
- Departamento de Botaênica, Universidade de Saão Paulo, Herbário SPF, Saão Paulo, Brazil
- Alexandre R. Zuntini
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Julien B. Bachelier
- 0Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Michael J. Bayly
- 1School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Martin W. Callmander
- 2Conservatoire et Jardin botaniques de la Ville de Genève, Geneva, Switzerland
- Marcelo F. Devecchi
- Departamento de Botaênica, Universidade de Saão Paulo, Herbário SPF, Saão Paulo, Brazil
- Susan K. Pell
- 3United States Botanic Garden, Washington, DC, United States
- Milton Groppo
- Departamento de Botaênica, Universidade de Saão Paulo, Herbário SPF, Saão Paulo, Brazil
- Porter P. Lowry
- 4Missouri Botanical Garden, St. Louis, MO, United States
- Porter P. Lowry
- 5Institut de Systématique, Évolution, et Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, École Pratique des Hautes Études, Université des Antilles, Paris, France
- John Mitchell
- 6New York Botanical Garden, New York, NY, United States
- Carolina M. Siniscalchi
- 7Department of Biological Sciences, Harned Hall, Mississippi State University, Mississippi State, MS, United States
- Jérôme Munzinger
- 8AMAP, Université Montpellier, Institut de Recherche pour le Développement (IRD), Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Centre National de la Recherche Scientifique (CNRS), Institut national de la recherche agronomique (INRAE), Montpellier, France
- Harvey K. Orel
- 1School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Caroline M. Pannell
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Caroline M. Pannell
- 9Department of Biology, Oxford University, Oxford, United Kingdom
- Caroline M. Pannell
- 0Marine Laboratory, Queen’s University Belfast, Portaferry, United Kingdom
- Lars Nauheimer
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
- Lars Nauheimer
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- Hervé Sauquet
- 1National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, Australia
- Andrea Weeks
- 2Department of Biology, George Mason University, Fairfax, VA, United States
- Alexandra N. Muellner-Riehl
- 3Department of Molecular Evolution and Plant Systematics & Herbarium, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
- Alexandra N. Muellner-Riehl
- 4German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Ilia J. Leitch
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Olivier Maurin
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Félix Forest
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Katharina Nargar
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- Katharina Nargar
- 5National Research Collections Australia, Commonwealth Industrial and Scientific Research Organization (CSIRO), Canberra, ACT, Australia
- Kevin R. Thiele
- 6School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- William J. Baker
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Darren M. Crayn
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
- Darren M. Crayn
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- DOI
- https://doi.org/10.3389/fpls.2023.1063174
- Journal volume & issue
-
Vol. 14
Abstract
Sapindales is an angiosperm order of high economic and ecological value comprising nine families, c. 479 genera, and c. 6570 species. However, family and subfamily relationships in Sapindales remain unclear, making reconstruction of the order’s spatio-temporal and morphological evolution difficult. In this study, we used Angiosperms353 target capture data to generate the most densely sampled phylogenetic trees of Sapindales to date, with 448 samples and c. 85% of genera represented. The percentage of paralogous loci and allele divergence was characterized across the phylogeny, which was time-calibrated using 29 rigorously assessed fossil calibrations. All families were supported as monophyletic. Two core family clades subdivide the order, the first comprising Kirkiaceae, Burseraceae, and Anacardiaceae, the second comprising Simaroubaceae, Meliaceae, and Rutaceae. Kirkiaceae is sister to Burseraceae and Anacardiaceae, and, contrary to current understanding, Simaroubaceae is sister to Meliaceae and Rutaceae. Sapindaceae is placed with Nitrariaceae and Biebersteiniaceae as sister to the core Sapindales families, but the relationships between these families remain unclear, likely due to their rapid and ancient diversification. Sapindales families emerged in rapid succession, coincident with the climatic change of the Mid-Cretaceous Hothouse event. Subfamily and tribal relationships within the major families need revision, particularly in Sapindaceae, Rutaceae and Meliaceae. Much of the difficulty in reconstructing relationships at this level may be caused by the prevalence of paralogous loci, particularly in Meliaceae and Rutaceae, that are likely indicative of ancient gene duplication events such as hybridization and polyploidization playing a role in the evolutionary history of these families. This study provides key insights into factors that may affect phylogenetic reconstructions in Sapindales across multiple scales, and provides a state-of-the-art phylogenetic framework for further research.
Keywords
- Cenomanian-Turonian Thermal Maximum
- phylogenomics
- target enrichment
- sequence capture
- HybSeq
- paralogy