Catalysts (Feb 2024)

Study on the Inhibition of Hydrogen Evolution Reaction by Electrocatalytic Reduction of Carbon Dioxide Using <i>Elsholtzia Harchowensis</i> Biochar

  • Wei Liu,
  • Shiqi Chen,
  • Ziwei Mei,
  • Liang Li,
  • Hong Tao

DOI
https://doi.org/10.3390/catal14030172
Journal volume & issue
Vol. 14, no. 3
p. 172

Abstract

Read online

With the widespread application of plant remediation technology in the field of soil remediation, there was an increasing stock of hyperaccumulating plant tissues containing heavy metals, but there was currently a lack of effective disposal methods. In the preliminary research process, researchers used the copper hyperaccumulating plant Elsholtzia Harchowensis to prepare biochar material electrodes and successfully used them in the electrocatalytic reduction of carbon dioxide (CO2) process. Due to the previous research being conducted in aqueous solutions, the hydrogen evolution reaction (HER) on the working electrode surface has a certain impact on the Faraday efficiency (FE) of carbon-containing products. In order to further improve the electrocatalytic reduction performance of biochar materials, this study was based on B- and N-doped biochar prepared from Elsholtzia Harchowensis as raw material. The influence mechanisms of electrode surface hydrophobicity and electrolyte components (PC/water) on the CO2RR and HER were studied, respectively. After dropwise coating PTFE on the surface of Cu/C-BN material, the hydrophobicity of Cu/C-BN-PT material was improved, and the effect on the active sites of the catalyst was relatively small without changing the structure and elemental characteristics of the original electrode. In a 1.0 M KHCO3 solution, the Faraday efficiency of H2 in Cu/C-BN-PT material decreased by 20.1% compared to Cu/C-BN at −0.32 V (vs. RHE), indicating that changing the hydrophilicity of the material can significantly inhibit the HER. In a solution of PC/water at a ratio of 9:1 (V:V), the FE of converting CO2 to methane (CH4) at −0.32 V (vs. RHE) reached 12.0%, and the FE of carbon monoxide (CO) reached 64.7%. The HER was significantly inhibited, significantly improving the selectivity of electrocatalytic CO2.

Keywords