Applied Sciences (Mar 2020)

Instance Hard Triplet Loss for In-video Person Re-identification

  • Xing Fan,
  • Wei Jiang,
  • Hao Luo,
  • Weijie Mao,
  • Hongyan Yu

DOI
https://doi.org/10.3390/app10062198
Journal volume & issue
Vol. 10, no. 6
p. 2198

Abstract

Read online

Traditional Person Re-identification (ReID) methods mainly focus on cross-camera scenarios, while identifying a person in the same video/camera from adjacent subsequent frames is also an important question, for example, in human tracking and pose tracking. We try to address this unexplored in-video ReID problem with a new large-scale video-based ReID dataset called PoseTrack-ReID with full images available and a new network structure called ReID-Head, which can extract multi-person features efficiently in real time and can be integrated with both one-stage and two-stage human or pose detectors. A new loss function is also required to solve this new in-video problem. Hence, a triplet-based loss function with an online hard example mining designed to distinguish persons in the same video/group is proposed, called instance hard triplet loss, which can be applied in both cross-camera ReID and in-video ReID. Compared with the widely-used batch hard triplet loss, our proposed loss achieves competitive performance and saves more than 30% of the training time. We also propose an automatic reciprocal identity association method, so we can train our model in an unsupervised way, which further extends the potential applications of in-video ReID. The PoseTrack-ReID dataset and code will be publicly released.

Keywords