Preparation of <i>Komagataeibacter xylinus</i> Inoculum for Bacterial Cellulose Biosynthesis Using Magnetically Assisted External-Loop Airlift Bioreactor
Anna Żywicka,
Daria Ciecholewska-Juśko,
Radosław Drozd,
Rafał Rakoczy,
Maciej Konopacki,
Marian Kordas,
Adam Junka,
Paweł Migdał,
Karol Fijałkowski
Affiliations
Anna Żywicka
Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, 70-311 Szczecin, Poland
Daria Ciecholewska-Juśko
Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, 70-311 Szczecin, Poland
Radosław Drozd
Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, 70-311 Szczecin, Poland
Rafał Rakoczy
Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
Maciej Konopacki
Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
Marian Kordas
Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
Adam Junka
Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Wroclaw, Borowska 211a, 50-534 Wrocław, Poland
Paweł Migdał
Department of Environment, Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland
Karol Fijałkowski
Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, 70-311 Szczecin, Poland
The aim of this study was to demonstrate the applicability of a novel magnetically assisted external-loop airlift bioreactor (EL-ALB), equipped with rotating magnetic field (RMF) generators for the preparation of Komagataeibacterxylinus inoculum during three-cycle repeated fed-batch cultures, further used for bacterial cellulose (BC) production. The fermentation carried out in the RMF-assisted EL-ALB allowed to obtain an inoculum of more than 200× higher cellular density compared to classical methods of inoculum preparation. The inoculum obtained in the RMF-assisted EL-ALB was characterized by a high and stable metabolic activity during repeated batch fermentation process. The application of the RMF-assisted EL-ALB for K. xylinus inoculum production did not induce the formation of cellulose-deficient mutants. It was also confirmed that the ability of K. xylinus to produce BC was at the same level (7.26 g/L of dry mass), regardless of inoculum age. Additionally, the BC obtained from the inoculum produced in the RMF-assisted EL-ALB was characterized by reproducible water-related properties, mechanical strength, nano-fibrillar structure and total crystallinity index. The lack of any negative impact of inoculum preparation method using RMF-assisted EL-ALB on BC properties is of paramount value for its future applications, including use as a biomaterial in tissue engineering, wound healing, and drug delivery, where especially BC liquid capacity, nanostructure, crystallinity, and mechanical properties play essential roles.