Applied Sciences (Nov 2024)
A Rectangular Spiral Inward–Outward Alternating-Flow Polymer Thermal Collector for a Solar Water Heating System—A Preliminary Investigation in the Climate of Seri Iskandar, Malaysia
Abstract
A flat-plate unglazed solar water heater (SWH) with a polymer thermal absorber was developed and experimented with. Polymer thermal absorbers could be a viable alternative to metal thermal absorbers for SWH systems. The performance of this polymer SWH system was measured based on inlet and outlet water temperature, water flow rate, ambient air temperature and solar irradiance. The polymer thermal absorbers were hollow Polyvinyl Chloride (PVC) tubes with a 20 mm external diameter and 3 mm thickness and were painted black to enhance radiation absorption. The pipes are arranged in a rectangular spiral inward–outward alternating-flow (RSioaf) pattern. The collector pipes were placed in a 1 m × 1 m enclosure with bottom insulation and a reflective surface for maximized radiation absorption. Water circulated through a closed loop with an uninsulated 16 L storage tank, driven by a pump and controlled by two valves to maintain a mass flow rate of 0.0031 to 0.0034 kg·s−1. The test was conducted under a partially clouded sky from 9 a.m. to 5 p.m., with solar irradiance between 105 and 1003 W·m−2 and an ambient air temperature of 27–36 °C. This SWH system produced outlet hot water at 65 °C by midday and maintained the storage temperature at 63 °C until the end of the test period. Photothermal energy conversion was recorded, showing a maximum value of 23%. Results indicate that a flat-plate solar water heater with a polymer thermal absorber in an RSioaf design can be an effective alternative to an SWH with a metal thermal absorber. Its performance can be improved with glazing and optimized tube sizing.
Keywords