Comparison of Aboveground Vegetation and Soil Seed Bank Composition among Three Typical Vegetation Types in the Karst Regions of Southwest China
Yili Guo,
Yufei Li,
Jianxing Li,
Jiaqi Li,
Shujun Wen,
Fuzhao Huang,
Wen He,
Bin Wang,
Shuhua Lu,
Dongxing Li,
Wusheng Xiang,
Xiankun Li
Affiliations
Yili Guo
Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
Yufei Li
Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
Jianxing Li
Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
Jiaqi Li
Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
Shujun Wen
Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
Fuzhao Huang
Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
Wen He
Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
Bin Wang
Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
Shuhua Lu
Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
Dongxing Li
Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
Wusheng Xiang
Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
Xiankun Li
Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
Rural agricultural activity generates cropland, secondary vegetation and straggling primary forest and can modify the soil seed bank (SSB), potentially impacting the restoration of preferred species. The interaction between vegetation and seed banks during the recovery process is dependent on management practices and recovery pathways. This study was carried out in Guilin of southwest China to assess the variation in plant diversity and species composition of both aboveground and soil seed banks across three typical vegetation types with different human interventions: orchard, bamboo shrub and primary forest. The results show that there were significant differences in the species composition and diversity of aboveground vegetation and SSB, as well as in soil properties among three typical vegetation types. The primary forest had the highest aboveground species diversity, while the orchard had the highest species diversity and seed density of SSB. In addition, principal component analysis (PCA) and canonical correspondence analyses (CCAs) showed that the species composition and plant life forms of the three typical vegetation types were significantly influenced by soil properties. Based on these findings, the characteristics of aboveground vegetation and the soil seed bank and their correlations with soil properties are expected to drastically change with human intervention. These results imply that unsustainable land use has greatly impacted soil properties, and consequently, the aboveground vegetation and SSB. Nevertheless, vegetation will recover quickly after farming is abandoned. The successful restoration of fragmented ecosystems requires the addition of seeds and seedlings of target species, especially perennial woody plants from the relevant natural ecosystems, to accelerate succession from bamboo shrub to forest.