Researches in Mathematics (Jul 2024)

Automorphism groups of some non-nilpotent Leibniz algebras

  • L.A. Kurdachenko,
  • P.Ye. Minaiev,
  • O.O. Pypka

DOI
https://doi.org/10.15421/242409
Journal volume & issue
Vol. 32, no. 1
pp. 101 – 109

Abstract

Read online

Let $L$ be an algebra over a field $F$ with the binary operations $+$ and $[,]$. Then $L$ is called a left Leibniz algebra if it satisfies the left Leibniz identity: $[a,[b,c]]=[[a,b],c]+[b,[a,c]]$ for all $a,b,c\in L$. A linear transformation $f$ of $L$ is called an endomorphism of $L$, if $f([a,b])=[f(a),f(b)]$ for all elements $a,b\in L$. A bijective endomorphism of $L$ is called an automorphism of $L$. It is easy to show that the set of all automorphisms of Leibniz algebra is a group with respect to the operation of multiplication of automorphisms. The description of the structure of the automorphism groups of Leibniz algebras is one of the natural and important problems of the general Leibniz algebra theory. The main goal of this article is to describe the structure of the automorphism group of a certain type of non-nilpotent three-dimensional Leibniz algebras.

Keywords