Applied Sciences (Jun 2021)

Methods of Constructing Time Series for Predicting Local Time Scales by Means of a GMDH-Type Neural Network

  • Łukasz Sobolewski,
  • Wiesław Miczulski

DOI
https://doi.org/10.3390/app11125615
Journal volume & issue
Vol. 11, no. 12
p. 5615

Abstract

Read online

Ensuring the best possible stability of UTC(k) (local time scale) and its compliance with the UTC scale (Universal Coordinated Time) forces predicting the [UTC-UTC(k)] deviations, the article presents the results of work on two methods of constructing time series (TS) for a neural network (NN), increasing the accuracy of UTC(k) prediction. In the first method, two prepared TSs are based on the deviations determined according to the UTC scale with a 5-day interval. In order to improve the accuracy of predicting the deviations, the PCHIP interpolating function is used in subsequent TSs, obtaining TS elements with a 1-day interval. A limitation in the improvement of prediction accuracy for these TS has been a too large prediction horizon. The introduction in 2012 of the additional UTC Rapid scale by BIPM makes it possible to shorten the prediction horizon, and the building of two TSs has been proposed according to the second method. Each of them consists of two subsets. The first subset is based on deviations determined according to the UTC scale, the second on the UTC Rapid scale. The research of the proposed TS in the field of predicting deviations for the Polish Timescale by means of GMDH-type NN shows that the best accuracy of predicting the deviations has been achieved for TS built according to the second method.

Keywords