مدیریت بیابان (Nov 2023)
Investigating the Effects of Land Use Changes on Dust Storms in the Sistan Region Using Markov Chain Forecasting
Abstract
IntroductionPopulation growth and the excessive use of natural resources have caused significant changes in natural ecosystems, including a decrease in rainfall and an increase in temperature. The potential exists for them to decrease vegetation and increase barren areas. Serious economic, social, and environmental damage can occur in natural ecosystems due to the destruction of land cover and other damages, such as dust storms. Therefore, ecosystem changes are taking place worldwide, both at the temporal and spatial scale, due to human activities and natural factors. So, investigating the amount of land use/cover changes, their effect on dust storms, and predicting these changes for the coming years can be an important step in reducing and controlling unprincipled changes, planning, and optimizing resource. Climate change and human activities, such as drought, human activities, and non-compliance with water rights, have a significant impact on the Hamon wetland area, so that the dry bed of the wetland has become the main sources of dust. This research is focused on investigating the impact of land use changes on dust storms and forecasting land use changes in the Sistan region for the next 20 years. Material and MethodsThe impact of land use changes on dust storms in the Sistan region was examined using Markov chain forecasting methods. For this purpose, first of all, the land use maps of 2002, 2011 and 2022 were prepared using satellite images. An anomalous method was used to investigate climatic parameters, including temperature, rainfall, and the number of days with dust, in the next step. To evaluate climatic changes, it is necessary to use a method that shows long-term changes. The anomaly method was employed for this purpose. The values of this index can be either positiveor negative. In order to predict land use changes for the next 20 years, the combination of the maps of 2002 and 2022 for severe drought conditions were used by using Markov chain and Cell models. The Markov model was predicted to generate multiple images. The transfer probability matrix allows for the expression of the probability that any type of land cover will be found in any location in the future. Despite the accuracy of transmission probabilities for each user is unknown, due to the lack of information on the spatial distribution of users, the Markov model does not have any spatial dependence information. In contrast, to the automatic network, it is an agent that has the ability to change its state based on the application of the law that shows the new state in accordance with the previous state and the state of its neighbors. Results and DiscussionThis study examined the impact of land use change on dust in the Sistan region. At first, climatic changes of temperature, rainfall and number of dusty days were investigated and the results showed that the temperature has increased and rainfall has decreased in the Sistan region during the last two decades. The land use maps also showed that in the years when the Hamon wetland has been drained, pastures and dense vegetation have increased and barren lands and salt marshes have decreased. But due to the recent droughts like the year 2022, when a drought has occurred in the region, the use of vegetation and pasture has decreased and barren and salt marshes have increased. These conditions cause an increase in the level of dust in the region. The land use map for severe drought conditions in the next 20 years was predicted using the Markov model. It showed that in the future, pastures and dense vegetation will decrease, but barren lands and salt marsh areas will increase dramatically. As desertification and wind erosion increase, dust storms will also increase as a result of these conditions. The economic, social, environmental, and health conditions of residents in the region are adversely affected by dust storms. Therefore, proper planning and management can reduce the damages caused by dust storms in the Sistan region.
Keywords