OncoImmunology (Dec 2024)

Clinical prognosticators and targets in the immune microenvironment of intrahepatic cholangiocarcinoma

  • Isis Lozzi,
  • Alexander Arnold,
  • Matthias Barone,
  • Juliette Claire Johnson,
  • Bruno V Sinn,
  • Johannes Eschrich,
  • Pimrapat Gebert,
  • Ruonan Wang,
  • Mengwen Hu,
  • Linda Feldbrügge,
  • Anja Schirmeier,
  • Anja Reutzel-Selke,
  • Thomas Malinka,
  • Felix Krenzien,
  • Wenzel Schöning,
  • Dominik P Modest,
  • Johann Pratschke,
  • Igor M Sauer,
  • Matthäus Felsenstein

DOI
https://doi.org/10.1080/2162402X.2024.2406052
Journal volume & issue
Vol. 13, no. 1

Abstract

Read online

Background Intrahepatic cholangiocarcinoma (ICC) is a disease with poor prognosis and limited therapeutic options. We investigated the tumor immune microenvironment (TIME) to identify predictors of disease outcome and to explore targets for therapeutic modulation.Methods Liver tissue samples were collected during 2008–2019 from patients (n = 139) diagnosed with ICC who underwent curative intent surgery without neoadjuvant chemotherapy. Samples from the discovery cohort (n = 86) were immunohistochemically analyzed on tissue microarrays (TMAs) for the expression of CD68, CD3, CD4, CD8, Foxp3, PD-L1, STAT1, and p-STAT1 in tumor core and stroma areas. Results were digitally analyzed using QuPath software and correlated with clinicopathological characteristics. For validation of TIME-related biomarkers, we performed multiplex imaging mass cytometry (IMC) in a validation cohort (n = 53).Results CD68+ cells were the predominant immune cell type in the TIME of ICC. CD4+high T cell density correlated with better overall survival (OS). Prediction modeling together with validation cohort confirmed relevance of CD4+ cells, PD-L1 expression by immune cells in the stroma and N-stage on overall disease outcome. In turn, IMC analyses revealed that silent CD3+CD4+ clusters inversely impacted survival. Among annotated immune cell clusters, PD-L1 was most relevantly expressed by CD4+FoxP3+ cells. A subset of tumors with high density of immune cells (“hot” cluster) correlated with PD-L1 expression and could identify a group of candidates for immune checkpoint inhibition (ICI). Ultimately, higher levels of STAT1 expression were associated with higher lymphocyte infiltration and PD-L1 expression.Conclusions These results highlight the importance of CD4+ T cells in immune response against ICC. Secondly, a subset of tumors with “hot” TIME represents potential candidates for ICI, while stimulation of STAT1 pathway could be a potential target to turn “cold” into “hot” TIME in ICC.

Keywords