Crystals (Mar 2024)

Growth of Spontaneous Nucleation AlN Crystals by Al-Base Alloy Evaporation in Nitrogen Atmosphere

  • Xiaochun Tao,
  • Yongkuan Xu,
  • Jianli Chen,
  • Yonggui Yu,
  • Xiaofang Qi,
  • Wencheng Ma,
  • Zhanggui Hu

DOI
https://doi.org/10.3390/cryst14040331
Journal volume & issue
Vol. 14, no. 4
p. 331

Abstract

Read online

Aluminum nitride (AlN) crystals with areas ranging from 1 mm2 to 2 mm2 were successfully grown through spontaneous nucleation at 1700 °C using a modified vapor transport method. In this approach, Cu–Al alloy served as the source of aluminum (Al), and nitrogen (N2) was employed as the nitrogen source. The morphology and crystalline quality of the AlN crystals were characterized by a stereo microscope, Raman spectrometer, photoluminescence (PL) and secondary-ion mass spectrometry (SIMS). Deposited on the graphite lid, the as-grown AlN crystals exhibited both rectangular and hexagonal shapes, identified as m-plane and c-plane AlN, respectively, based on Raman spectroscopy. The full width half maximum (FWHM) values of E2 (high) for the rectangular and hexagonal grains were measured to be 6.00 cm−1 and 6.06 cm−1, respectively, indicating high crystalline quality. However, PL and SIMS analysis indicated the presence of impurities associated with oxygen in the crystals. This paper elucidates the growth mechanism of the modified vapor transport method and highlights the role of the Cu–Al alloy in sustaining reactions at lower temperatures. The addition of copper (Cu) not only facilitates sustainable reactions, but also provides a novel perspective for the growth of AlN single crystals.

Keywords