International Journal of Mathematical, Engineering and Management Sciences (Jun 2020)

Computationally Efficient Hybrid Method for the Numerical Solution of the 2D Time Fractional Advection-Diffusion Equation

  • Fouad Mohammad Salama,
  • Norhashidah Hj. Mohd Ali

DOI
https://doi.org/10.33889/IJMEMS.2020.5.3.036
Journal volume & issue
Vol. 5, no. 3
pp. 432 – 446

Abstract

Read online

In this paper, a hybrid method based on the Laplace transform and implicit finite difference scheme is applied to obtain the numerical solution of the two-dimensional time fractional advection-diffusion equation (2D-TFADE). Some of the major limitations in computing the numerical solution for fractional differential equations (FDEs) in multi-dimensional space are the huge computational cost and storage requirement, which are O(N^2) cost and O(MN) storage, N and M are the total number of time levels and space grid points, respectively. The proposed method reduced the computational complexity efficiently as it requires only O(N) computational cost and O(M) storage with reasonable accuracy when numerically solving the TFADE. The method’s stability and convergence are also investigated. The Results of numerical experiments of the proposed method are obtained and found to compare well with the results of existing standard finite difference scheme.

Keywords