Molecular Therapy: Nucleic Acids (Jan 2016)

Conjugate-SELEX: A High-throughput Screening of Thioaptamer-liposomal Nanoparticle Conjugates for Targeted Intracellular Delivery of Anticancer Drugs

  • Qingshan Mu,
  • Akshaya Annapragada,
  • Mayank Srivastava,
  • Xin Li,
  • Jean Wu,
  • Varatharasa Thiviyanathan,
  • Hongyu Wang,
  • Alexander Williams,
  • David Gorenstein,
  • Ananth Annapragada,
  • Nadarajah Vigneswaran

DOI
https://doi.org/10.1038/mtna.2016.81
Journal volume & issue
Vol. 5, no. C

Abstract

Read online

Patients with advanced head and neck squamous cell carcinoma receiving chemotherapy have a poor prognosis partly due to normal tissue toxicity; therefore, development of a tumor-targeted drug delivery platform to minimize collateral toxicity is a goal of cancer nanomedicine. Aptamers can achieve this purpose. While conventional Systematic Evolution of Ligands by Exponential Enrichment (SELEX) screens aptamer-only libraries and conjugates them to delivery vehicles after selection, we hypothesized that specific delivery requires screening libraries with aptamer-nanoparticle conjugates. We designed a procedure called, “Conjugate-SELEX”, where liposomal nanoparticles (LNP) conjugated with aptamers is screened to identify aptamers that carried attached LNPs to the human head and neck squamous cell carcinoma cell cytosol. Aptamer-LNPs were simultaneously selected for a low affinity to human hepatocytes, minimizing hepatoxicity and LNP clearance. Post-SELEX Next Generation sequencing demonstrated convergence to a family of sequences with one base difference. Affinity pulldown and proteomics analysis identified the uptake-mediating surface receptor as the neuroblast differentiation-associated protein AHNAK (Desmoyokin), a ubiquitous intracellular protein expressed in certain epithelial cell types. Uptake studies with the lead aptamer-conjugates showed enhanced uptake and increased cytotoxicity induced by doxorubicin in cells treated with aptamer-conjugated LNPs over LNP controls. Conjugate-SELEX identifies aptamers capable of targeted cytosolic delivery of attached LNPs payload, while minimizing off-target delivery. The technique lends itself to identification of uptake-mediating surface receptors.

Keywords