Remote Sensing (Mar 2023)

Deep Convolutional Compressed Sensing-Based Adaptive 3D Reconstruction of Sparse LiDAR Data: A Case Study for Forests

  • Rajat C. Shinde,
  • Surya S. Durbha

DOI
https://doi.org/10.3390/rs15051394
Journal volume & issue
Vol. 15, no. 5
p. 1394

Abstract

Read online

LiDAR point clouds are characterized by high geometric and radiometric resolution and are therefore of great use for large-scale forest analysis. Although the analysis of 3D geometries and shapes has improved at different resolutions, processing large-scale 3D LiDAR point clouds is difficult due to their enormous volume. From the perspective of using LiDAR point clouds for forests, the challenge lies in learning local and global features, as the number of points in a typical 3D LiDAR point cloud is in the range of millions. In this research, we present a novel end-to-end deep learning framework called ADCoSNet, capable of adaptively reconstructing 3D LiDAR point clouds from a few sparse measurements. ADCoSNet uses empirical mode decomposition (EMD), a data-driven signal processing approach with Deep Learning, to decompose input signals into intrinsic mode functions (IMFs). These IMFs capture hierarchical implicit features in the form of decreasing spatial frequency. This research proposes using the last IMF (least varying component), also known as the Residual function, as a statistical prior for capturing local features, followed by fusing with the hierarchical convolutional features from the deep compressive sensing (CS) network. The central idea is that the Residue approximately represents the overall forest structure considering it is relatively homogenous due to the presence of vegetation. ADCoSNet utilizes this last IMF for generating sparse representation based on a set of CS measurement ratios. The research presents extensive experiments for reconstructing 3D LiDAR point clouds with high fidelity for various CS measurement ratios. Our approach achieves a maximum peak signal-to-noise ratio (PSNR) of 48.96 dB (approx. 8 dB better than reconstruction without data-dependent transforms) with reconstruction root mean square error (RMSE) of 7.21. It is envisaged that the proposed framework finds high potential as an end-to-end learning framework for generating adaptive and sparse representations to capture geometrical features for the 3D reconstruction of forests.

Keywords