Case Studies in Thermal Engineering (Sep 2023)
Research on the heat transfer performance of an improved elastic tube bundle heat exchanger under fluid-induced vibration
Abstract
The heat transfer performance (HTP) of an improved elastic tube bundle (IETB) was analyzed using a bi-directional fluid-structure interaction calculation method. The vibration-enhanced HTP of heat exchangers with different inlet velocities (Uin) and row number N were studied. The results show that the amplitude gradually increases as the Uin increase with a maximum increase of 309.98%. The amplitude with fixed shell side length (FL-heat exchanger) is generally higher than that with variable shell side length (VL-heat exchanger) under different row numbers. The average amplitude of the three directions increased by 4.55%, 11.54%, and 7.41%, respectively. The heat transfer coefficient (h) is directly proportional to Uin, and the comprehensive HTP gradually decreases with the increase of Uin. With the increase in the row numbers, h generally showed a downward trend. For the VL-heat exchanger, h decreases as the row number increases, which increases from N=6 to N=9, and h decreases by 13.85%. For the FL-heat exchanger, h first increases and then gradually decreases. The comprehensive HTP also maintained the same trend. Compared VL-heat exchanger and FL-heat exchanger, reducing the spacing between tube rows increases heat transfer per unit volume, leading to improved comprehensive HTP of the IETB heat exchanger.