Journal of Marine Science and Engineering (Aug 2022)

Hydrodynamic Performance of a Catamaran in Shallow Waters

  • Kayhan Ulgen,
  • Manhar R. Dhanak

DOI
https://doi.org/10.3390/jmse10091169
Journal volume & issue
Vol. 10, no. 9
p. 1169

Abstract

Read online

The effects of limited water depth on the hydrodynamic performance of a catamaran with the full-scale dimensions and geometry of a WAM-V 16 unmanned surface vehicle operating in shallow waters are investigated using an incompressible URANS-VOF solver in OpenFOAM®. Simulations of the flow associated with the passage of the catamaran in shallow waters have been conducted for a range of vehicle speed and several shallow to intermediate water depths under free trim and sinkage conditions. The effects of water depth on the resistance and the dynamic motion of the catamaran are characterized. The total resistance coefficient of the catamaran is shown to increase by as much as over 40% at transcritical Froude numbers, close to the critical depth-dependent Froude number (Frh=1.0). The wave system associated with the flow is examined and its relationship to observed impacts on resistance, trim and sinkage are discussed. The effect of limited water depth on Kelvin’s wake angle is characterized in terms of both length and depth Froude numbers and is shown to be in good agreement with theory.

Keywords