Heliyon (Mar 2024)
Parametric study of an empty diffuser geometric parameters and shape for a wind turbine using CFD analysis
Abstract
This research examines the optimal 3D geometric parameters and shape of empty diffusers to enhance the mass flow rate of the HAWT rotor plane using a detailed parametric study. Previous works have investigated the use of diffusers to augment turbine power output; however, different curvature surfaces and the effects of all associated angles have not been considered for a thorough evaluation. This work mainly focuses on analyzing the effect of opening angles (2° to 22°), inlet shroud angles (8° to 24°), flange height ratios, flange angles (0° and 15°), and shape of the diffuser as well as flanges on velocity, pressure at the diffuser entry, and through the diffuser section at a wind speed of 4.5 m/s. At an inlet-shroud angle of 24° and an opening angle of 8°, with a diffuser flange height-throat diameter ratio of 0.3, the system achieved an 82.9% increase in flowrate. The diffuser with an inlet shroud-side lower stepped flange showed an optimum velocity of 9.12 m/s (maximum) and 8.2 m/s (average), resulting in a 102.66% and 82.2% increase in velocity, respectively. The percentage increase in velocity of the present study is 92.61%, compared with the previous maximum increase in rate of 53.8%, and then an increase in velocity of 38.81% was obtained. The optimum speed occurred at 0.175 m from the inlet section of the diffuser, indicating where the turbine should best be located. The CFD results from this work were validated with experimental data from the literature, showing a good agreement between the two. Integrated diffuser-turbine system simulation and experimental work with field tests are recommended as a way forward.