Frontiers in Oncology (Apr 2021)
Analysis of Adenoviral p53 Gene Therapy Clinical Trials in Recurrent Head and Neck Squamous Cell Carcinoma
Abstract
BackgroundWe conducted an analysis of previous adenoviral p53 (Ad-p53) treatment data in recurrent head and neck squamous cell carcinoma (HNSCC) patients to identify optimal Ad-p53 treatment methods for future clinical trials.MethodsThe analysis involved recurrent HNSCC patients treated with Ad-p53 for whom p53 genotyping and immunohistochemistry tumor biomarker studies had been performed (n = 70). Ad-p53 tumor treatment responses defined by RECIST 1.1 criteria were correlated with Ad-p53 dose and tumor p53 biomarkers. Gene expression profiles induced by Ad-p53 treatment were evaluated using the Nanostring IO 360 panel.ResultsAd-p53 dose based upon the injected tumor volume had a critical effect on tumor responses. All responders had received Ad-p53 doses greater than 7 × 1010 viral particles/cm3 of tumor volume. There was a statistically significant difference in tumor responses between patients treated with greater than 7 × 1010 viral particles/cm3 compared to patients treated at lower Ad-p53 doses (Tumor Response 31% (9/29) for Ad-p53 > 7 × 1010 viral particles/cm3 versus 0% (0/25) for Ad-p53 < 7 × 1010 viral particles/cm3; p = 0.0023). All responders were found to have favorable p53 biomarker profiles defined by less than 20% p53 positive tumor cells by immunohistochemistry (IHC), wild type p53 gene sequence or p53 deletions, truncations, or frame-shift mutations without functional p53 tetramerization domains. Preliminary gene expression profiling results revealed that Ad-p53 treatment increased interferon signaling, decreased TGF-beta and beta-catenin signaling resulting in an increased CD8+ T cell signature which are associated with increased responses to immune checkpoint blockade.ConclusionsOur findings have important implications for future p53 targeted cancer treatments and identify fundamental principles to guide Ad-p53 gene therapy. We discovered that previous Ad-p53 clinical trials were negatively impacted by the inclusion of patients with unfavorable p53 biomarker profiles and by under dosing of Ad-p53 treatment. Future Ad-p53 clinical trials should have favorable p53 biomarker profiles inclusion criteria and Ad-p53 dosing above 7 × 1010 viral particles/cm3 of injected tumor volume. Preliminary gene expression profiling identified p53 mechanisms of action associated with responses to immune checkpoint blockade supporting evaluation of Ad-p53 in combination with immune checkpoint inhibitors.
Keywords