Technology in Cancer Research & Treatment (May 2024)

Dosimetric Effect of Target Position Accuracy on Single-Isocenter Multiple Liver Metastases SBRT

  • Yun Zhang PhD,
  • Shanzhou Niu PhD,
  • Jun Yuan MD,
  • Xiaoping Wang MD,
  • Changfei Gong MD,
  • Chunbo Tang MD

DOI
https://doi.org/10.1177/15330338241257422
Journal volume & issue
Vol. 23

Abstract

Read online

Purpose: To evaluate the dosimetric effects of intrafraction baseline shifts combined with rotational errors on Four-dimensional computed tomography-guided stereotactic body radiotherapy for multiple liver metastases (MLMs). Methods: A total of 10 patients with MLM (2 or 3 lesions) were selected for this retrospective study. Baseline shift errors of 0.5, 1.0, and 2.0 mm; and rotational errors of 0.5°, 1°, and 1.5°, were simulated about all axes. All of the baseline shifts and rotation errors were simulated around the planned isocenter using a matrix transformation of 6° of freedom. The coverage degradation of baseline shifts and rotational errors were analyzed according to the dose to 95% of the planning target volume (D95) and the volume covered by 95% of the prescribed dose (V95), and related changes in gross tumor volume were also analyzed. Results: At the rotation error of 0.5° and the baseline offset of less than 0.5 mm, the D95 and V95 values of all targets were >95%. For rotational errors of 1.0° (combined with all baseline shift errors), 36.3% of targets had D95 and V95 values of 95% for about 77.3% of the targets. Only 11.4% of the D95 and V95 values were >95% when the baseline shift errors were increased to 2.0 mm. When the rotational error was increased to 1.5° and baseline shift errors increased to 1.0 mm, the D95 and V95 values were >95% in only 3 cases. Conclusions: The multivariate regression model analysis in this study showed that the coverage of the target decreased further with reduced target volume, increasing the baseline drift, the rotation error, and the distance to the target.