Journal of Algebraic Systems (Sep 2020)

MULTIPLICATION MODULES THAT ARE FINITELY GENERATED

  • Y. Tolooei

DOI
https://doi.org/10.22044/jas.2019.8699.1421
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 5

Abstract

Read online

Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)\leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a characterization of finitely generated multiplication modules.

Keywords