Vascular Health and Risk Management (Oct 2021)

Diagnostic Work-Up of Cardiac Amyloidosis Using Cardiovascular Imaging: Current Standards and Practical Algorithms

  • Korosoglou G,
  • Giusca S,
  • André F,
  • aus dem Siepen F,
  • Nunninger P,
  • Kristen AV,
  • Frey N

Journal volume & issue
Vol. Volume 17
pp. 661 – 673

Abstract

Read online

Grigorios Korosoglou,1,2 Sorin Giusca,1,2 Florian André,3,4 Fabian aus dem Siepen,3,4 Peter Nunninger,5 Arnt V Kristen,3,6 Norbert Frey3,4 1GRN Hospital Weinheim, Department of Cardiology, Vascular Medicine and Pneumology, Weinheim, Germany; 2Cardiac Imaging Center Weinheim, Hector Foundation, Weinheim, Germany; 3Department of Cardiology, Pneumology and Angiology, University Hospital Heidelberg, Heidelberg, Germany; 4German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany; 5Radiology and Nuclear Medicine Weinheim, Weinheim, Germany; 6Cardiovascular Center Darmstadt, Darmstadt, GermanyCorrespondence: Grigorios KorosoglouGRN Hospital Weinheim, Department of Cardiology & Vascular Medicine, Roentgenstrasse 1, Weinheim, D-69469, GermanyTel +49 6201 89 2142Fax +49 6201 89 2507Email [email protected]: Among non-ischemic cardiomyopathies, cardiac amyloidosis is one of the most common, being caused by extracellular depositions of amyloid fibrils in the myocardium. Two main forms of cardiac amyloidosis are known so far, including 1) light-chain (AL) amyloidosis caused by monoclonal production of light-chains, and 2) transthyretin (ATTR) amyloidosis, caused by dissociation of the transthyretin tetramer into monomers. Both AL and ATTR amyloidosis are progressive diseases with median survival from diagnosis of less than 6 months and 3 to 5 years, respectively, if untreated. In this regard, death occurs in most patients due to cardiac causes, mainly congestive heart failure, which can be prevented due to the presence of effective, life-saving treatment regimens. Therefore, early diagnosis of cardiac amyloidosis is crucial more than ever. However, diagnosis of cardiac amyloidosis may be challenging due to variable clinical manifestations and the perceived rarity of the disease. In this regard, clinical and laboratory reg flags are available, which may help clinicians to raise suspicion of cardiac amyloidosis. In addition, advances in cardiovascular imaging have already revealed a higher prevalence of cardiac amyloidosis in specific populations, so that the diagnosis especially of ATTR amyloidosis has experienced a > 30-fold increase during the past ten years. The goal of our review article is to summarize these findings and provide a practical approach for clinicians on how to use cardiovascular imaging techniques, such as echocardiography, cardiac magnetic resonance, bone scintigraphy and, if required, organ biopsy within predefined diagnostic algorithms for the diagnostic work-up of patients with suspected cardiac amyloidosis. In addition, two clinical cases and practical tips are provided in this context.Keywords: cardiac amyloidosis, ATTR amyloidosis, AL amyloidosis, echocardiography, cardiac magnetic resonance, bone scintigraphy, myocardial biopsy, specific therapy

Keywords