Beilstein Journal of Organic Chemistry (Sep 2017)

A novel application of 2-silylated 1,3-dithiolanes for the synthesis of aryl/hetaryl-substituted ethenes and dibenzofulvenes

  • Grzegorz Mlostoń,
  • Paulina Pipiak,
  • Róża Hamera-Fałdyga,
  • Heinz Heimgartner

DOI
https://doi.org/10.3762/bjoc.13.185
Journal volume & issue
Vol. 13, no. 1
pp. 1900 – 1906

Abstract

Read online

Trimethylsilyldiazomethane (TMS-CHN2) reacts readily with hetaryl thioketones to give sterically crowded 2-trimethylsilyl-4,4,5,5-tetrahetaryl-1,3-dithiolanes with complete regioselectivity at −75 °C as well as at rt. Thiofluorenone, a relatively stable and highly reactive aryl thioketone, yields upon treatment with TMS-CHN2 at −60 °C the corresponding 1,3,4-thiadiazoline. This unstable cycloadduct undergoes decomposition at ca. −45 °C and the silylated thiocarbonyl S-methanide generated thereby is trapped with complete regioselectivity by aryl or hetaryl thioketones forming also sterically crowded 2-trimethylsilyl-1,3-dithiolanes. The obtained 1,3-dithiolanes, by treatment with an equimolar amount of TBAF in a one-pot procedure, are converted in high yields into hetaryl/aryl-substituted ethenes or dibenzofulvenes, respectively, via a cycloreversion reaction of the intermediate 1,3-dithiolane carbanion. The presented protocol offers a new, highly efficient approach to tetrasubstituted ethenes and dibenzofulvenes bearing aryl and/or hetaryl substituents.

Keywords